
GEM’s rendering engine: a mystery unrevealed

Johannes M Zmölnig
Institute of Electronic Music and Acoustics,
University of Music and Dramatic Arts, Graz

zmoelnig@iem.at

Abstract

Gem was the first extension to Miller Puckette’s pure-data that
allowed graphics-processing within this environment. Be-
cause Gem’s hierarchical approach differs significantly from
pd’s “native” linear signal-flow model, the underlying ren-
dering engine has proven to be a bit complicated. What’s
more, this engine keeps changing, which makes it even harder
to understand. This article aims to shed some light on what
is the core part of more than a 100.000 lines of source-code.

1 Introduction
Gem has been around for almost 10 years. The origi-

nal Graphics Environment for Max has undergone a lot of
changes until the current form has been reached. Not only the
number of objects has increased, but also the underlying ren-
dering system has changed completely several times. Apart
from adding new features, the main reason for such changes
has been the problem of integrating a 3D-modelling system
within pd’s signal-flow structure.

Patcher-languages (like pd) have a very linear processing
structure: A signal is generated by a source, it is passed to a
modifying object (e.g. a filter), then it is passed to another
modifying object (and so on), and finally it is sent to a sink
(e.g. the soundcard-output) (see fig.1)

*~ 0.5

noise~

dac~ 1

lop~ 200

Figure 1: the signal flow in pd

This structure applies very well to video-processing (a
video-stream is modified by several “effects” and finally sent

to the monitor).
However it does not apply too well to vector-graphics,

which are generally best described by a hierarchical model.
Due to the graphical nature of patcher-languages, they

seem ideal to describe hierarchical models. However it some-
times needs some tweaking to circumvent their linear nature.

2 An early attempt: using signal-flows
(–1996)

The first versions of GEM for the Max-platform tried to
utilize the linear signal-flow model for doing graphics pro-
cessing (see fig.2).

r frame

square

rotate

90 0 0 1

color

1 0 0

render

Figure 2: an early Gem-patch

A “source”-object (e.g. a [square]) generates a shape,
which is then sent to one or several modifying objects (e.g.
[rotate]) and finally the whole “signal” is sent to a [render]-
object, which renders to the screen.

While this seems natural and simple, it is unfortunately
not the way, how the underlying openGL-rendering engine
works.

OpenGL is a state based system. This means that there
is one single state that is manipulated by various modifiers
(e.g. rotation). The modifiers do not “know” the objects they
are modifying as they are only modifying an abstract state

(represented by a transformation matrix). Only in one of the
last stages of the display-process, the state is applied to the
actual vertices that are defined by the data-source.

To achieve the illusion of a signal-flow environment, a
gemList is passed between the objects. Each object adds its
parameters to the gemList, e.g. the [rotate]-object would
add r angle x y z. Finally the gemList is parsed and
executed by the the [render]-object.

For a detailed explanation of this early model, see Danks
(1996).

3 A hierarchical model (1997–2003)
The first attempt to integrate 3D-graphics did not mirror

the underlying openGL-process, which led to the use of “dis-
play lists and other convoluted methods” (Danks (1997b)).

When Gem was ported from Max to pd, a complete re-
design of the system changed the model from “bottom-up” to
“top-down”, which corresponds to openGL’s state machine.
The drawback of this change is, that nowadays Gem-patches
are fundamentally different in structure from “normal” pd-
patches, which makes them harder to understand for begin-
ners.

square

rotate

0 0 1

gemhead

separator

translate

separator

color

1 0 0

sphere

0

0

0 1 0

Figure 3: a hierarchical Gem-patch

Each rendering-chain now starts with a [gemhead], which
is ensures that all subsequent operations have a valid display-
context. The [gemhead] is connected to several manipu-
lation objects (like [rotate]) which directly change the
openGL-state when called. Finally, a “vertex-emitting” ob-
ject, like [square], draws it’s vertices within the current
state (see fig.3).

3.1 Architecture
(Danks 1997a) The Gem-side core of the rendering engine

is the GemManager. It holds the scheduler and the display-
management, including the openGL rendering context and
viewpoint settings.

To control the GemMan, the object [gemwin] is used.
When there are several [gemwin]s, they all manipulate the
same GemMan.

The [gemhead]-object is the beginning of a render-chain.
On creation, it registers itself to the GemMan, so that it gets
called each render-cycle. When the [gemhead]-object is
destroyed, it unregisters itself from the GemMan.

When rendering is turned on, the GemMan will periodi-
cally call the [gemhead]s in the apropriate order to render
their chain.

(GemBase)

display−
managment

gemwin

gemheadgemhead

(GemBase)

(GemBase)

addObj
GemMan

scheduler

renderGL

render

Figure 4: the core components of Gem

3.2 [gemhead] registration
There is no object representing the GemMan, rather it is

created when Gem is loaded and stays statically in memory.
Thus a [gemhead]-object can register itself to the Gem-
Man, even if it is the first object created.

The registered [gemhead]s are internally stored in a
linked list, sorted by their “priority”-value.

3.3 [gemwin] controls
Most parameters of the GemMan – like camera-position,

fog,. . . – are static variables which can be set by the [gemwin]-
object.

GemDAG The GemDAG (DAG=”directed acyclic graph”)
is used to compile the network of gem-objects. Each gem-
object registers itself to the DAG on receiving the gem_state-
message when rendering is turned on. When rendering is
turned off, this network will be destroyed. The compiled net-
work is not aware of any changes made after compilation,
therefore it is not possible to add new objects to or delete ob-
jects from the render-chain at runtime.

GemState The GemState is a a structure that holds a couple
of variables that are passed from one gem-object to the object
connected to it. These include general information on the
rendering-mode we are in (whether lighting is enabled and

whether we want smooth or flat shading). These general flags
are re-set by the GemMan each render-cycle. Apart from that,
the GemState includes complex data, that is passed between
objects, namely a pointer to an image for pixel-processing
and information needed for textures.

Finally, it holds a dirty flag that indicates that the gem-
chain has been modified since the last render-cycle and thus
needs to be rebuilt.

GemCache is a portion of memory that is shared between
the objects of a render-chain. It is a means of telling the
[gemhead], that an object has changed the render-chain in
such a away, that upstream objects are affected. This is par-
ticularily important for image-processing. As Gem tries to
reduce the computational load, pix-objects are only executed
when the upstream image changes. If the parameters of a
pix-effect are changed, the image-source has thus to be told
to resend the image.

The GemCache also manages the deletion of gem-objects
from a compiled DAG. Whenever an object is deleted, the
DAG becomes invalid to avoid segmentation faults.

3.4 Step by step
1. Gem is loaded; GemMan is created

2. a new [gemhead] registers itself to the gemheadLink-
list in GemMan, which is ordered by the priority of the
[gemhead]s.

3. a [create(-message is sent to [gemwin]: Gem-
Man creates a new window and binds an openGL-context
to it

4. Starting the rendering

(a) When rendering is turned on (and the window is
already created), the startRendering-function of
each registered [gemhead] is called

(b) The [gemhead] creates a new instance of Gem-
Cache and GemDag. A pd-message with refer-
ences to these two instances is output through the
objects outlet.

(c) A gem-object (which inherits from GemBase that
is connected to the [gemhead], stores the refer-
ence to the GemCache locally.

(d) The gem-object registers itself and its render- and
postrender-callbacks to the GemDag.

(e) The startRendering()-function of the gem-object
is executed for initialization.

....

....

....

....

....

....

....

....

....

....

....

....m_cache

gem_dagCacheMessage

postrender

stopRendering

startRendering

render

....

....

....

....

....

....

....

....

....

....

....

....m_cache

new GemCache
new GemDag

del GemCache
del GemDag

stopRendering

01

gem_state

DAG

gemheadLink

render

addObj

resetGL

new GemState

swapBuffers()

gem_dagCacheMessage

postrender

stopRendering

startRendering

render

startRendering

renderGL

glPushMatrix()

renderBase()

glPopMatrix()

color 1 0 0

GemBase

gemhead

GemMan

GemBase

gemwin

Figure 5: the render-process

(f) It then outputs a pd-message with references to
the instances GemCache and GemDag to all con-
nected gem-objects.

(g) With all gem-objects downstream the [gemhead]
registering themselves to the DAG, a static branch
of the render-network has been established.

(h) After all [gemhead]s have been called, the com-
plete render-network has been created.

(i) If running in double-buffered mode, the GemMan
calls its render()-function.

5. Rendering

(a) Whenever GemMan’s render()-function is called,
it first resets the openGL state machine (view-
point, lighting, . . .)

(b) An instance of GemState is created and initialized
(e.g. the lighting-flags)

(c) The renderGL()-function of every [gemhead]
is called with the GemState.

(d) The [gemhead] checks whether the DAG and
the Cache are valid or whether rendering has been
disabled for this render-chain.

(e) The current openGL-state is pushed to a stack.
(f) The dirty-flag of the GemState is set to the value

of the GemCache.
(g) The render(GemState*)-Function of each entry in

the DAG is called (top-down).
(h) When the end of a DAG has been reached, the

postrender(GemState*)-functions of its entries are
called (bottom-up)

(i) The original openGL-state is popped back from
the stack.

(j) After all [gemhead]s have been processed, the
back- and front-buffers are swapped (if in double-
buffered mode).

(k) Finally, the next render-cycle is scheduled. (in
double-buffered mode)

6. Stopping the Rendering

(a) The re-scheduling of the render()-command is su-
pressed

(b) The stopRendering()-function of each registered
[gemhead] is called.

(c) [gemhead] calls the stopRendering()-function
of each entry in its DAG, which sets the local
GemCache of the gem-objects to invalid and al-
lows to de-initialize.

(d) The DAG and the GemCache are deleted.

4 Utilizing pd’s message-system (2003–
now)

(Zmölnig and Danks 2002)
The use of statically compiled DAGs has several big dis-

advantages. It is not possible to add objects once the DAG
is compiled. If an object is deleted from the DAG, the whole
DAG is set invalid, so that this render-chain is not rendered
any more.

• The static rendering-network makes editing a Gem-patch
very uncomfortable. Each time a modification is made
to the render-chain, the rendering has to be restarted to
see the results.

• The static nature also prohibits to change the render-
graph dynamically. It is not possible, to decide at run-
time which parts should be rendered.

• PD’s messaging system is mirrored by the GemDag.

• It is not possible to use pd’s objects for controlling the
“signal-flow” (e.g.: [spigot]).

Therefore, the GemDag has been deprecated in favour of
the pd-internal message-system. These changes only affect
the [gemhead] and [GemBase] objects.

4.1 Starting and stopping the rendering
When rendering is started, a [gemhead] emits a mes-

sage gem_state 1. This message triggers the execution
of the startRendering()-function of a connected gem-object.
After the gem-object has executed its render-initialization, it
emmits the gem_state 1 to tell all downstream-objects to
execute their startRendering()-function. When rendering is
turned off, [gemhead] emits a gem_state 0 message.
This triggers the stopRendering()-function of a connected gem-
objects, which then outputs the same message to all con-
nected objects.

4.2 Doing the rendering

5 Future renderings
(Zmölnig 2004)

6 Conclusion

References
Danks, M. (1996). The graphics environment for max. In Pro-

ceedings of the International Computer Music Conference,

m_cache

m_cache

startRendering

renderGL

glPushMatrix()

renderBase()

glPopMatrix()

stopRendering

new GemCache

del GemCache

postrender

stopRendering

startRendering

render

....

....

....

....

....

....

....

....

....

....

....

....

postrender

stopRendering

startRendering

render

....

....

....

....

....

....

....

....

....

....

....

....

gemhead

GemBase

GemBase

Figure 6: the render-process using pd-messages

pp. 67–70. International Computer Music Association.
Danks, M. (1997a). Gem-0.70 source code. ftp:

//ftp.iem.at/pd/Externals/GEM/BAK/OLD/
gem-linux-0.70.src.tar.gz, accessed 24.09.2004.

Danks, M. (1997b). Real-time image and video processing in
gem. In Proceedings of the International Computer Music
Conference, pp. 220–223. International Computer Music As-
sociation.

Zmölnig, J. M. (2004). Gem-cvs source code, multiple_window-
branch. cvs://cvs.gem.iem.at/cvsroot/
pd-gem/Gem, accessed 24.09.2004.

Zmölnig, J. M. and M. Danks (2002). Gem-0.87 source code.
ftp://ftp.iem.at/pd/Externals/GEM/gem-0.
90.0.tgz, accessed 24.09.2004.

