
MANIPULATION OF AUDIO IN THE WAVELET
DOMAIN PROCESSING

A WAVELET STREAM USING PD

Institut für Elektronische Musik (IEM)

Graz, 2006

Raúl Díaz Poblete

2

ABSTRACT

El objetivo de este trabajo es investigar las posibilidades
del uso en tiempo real de la transformada wavelet discreta con
Pure Data para el análisis / resíntesis de señales de audio.

Con esta intención he realizado un acercamiento con
Pure Data a un nuevo tipo de síntesis granular basada en la
transformada wavelet: la resíntesis de una señal de audio a
partir de sus coeficientes wavelet mediante una síntesis aditiva
de flujos de wavelets (una sucesión temporal de 'gránulos
wavelet' para cada escala o banda de frecuencia que son
escalados por un factor de amplitud obtenido de los
coeficientes del análisis wavelet).

También he desarrollado otras aplicaciones de audio
mediante la manipulación de los coeficientes wavelet para
estudiar las posibilidades de pitch shift, time stretch,
ecualización y randomización de audio.

3

ABSTRACT

The aim of this work is to research the possibilities of use
the discrete wavelet transform in real-time with Pure Data for
analysis / resynthesis of audio signals.

With this intention I approached to a new sort of
granular synthesis with Pure Data based on wavelet
transform: resynthesis of an audio signal from its wavelet
coefficients by means of an additive synthesis of wavelet
streams (a temporal succession of 'wavelets grains' for each
scale or frequency level which are enveloped by an amplitude
factor obtained from wavelet analysis coefficients).

Another audio applications by means of wavelet
coefficients manipulation have been developed to study the
possibilities of pitch shift, time stretch, equalization and audio
randomization.

4

ABSTRACT

Ziel der Arbeit ist die Möglichkeiten des Einsatzes der
diskreten Wavelet Transformation in Echtzeit mittels der
grafischen Programmiersprache Pure Data zu erforschen, um
eine Analyse, Transformation und Resynthesis von
Audiosignalen zu realisieren.

Dazu wird eine neue Art eines granularen Synthesizer
mit Pure Data mit Wavlets als Samplebasis entwickelt. Die
Resynthese des Audiosignals von ihren Waveletkoeffizienten
mittels additive wavelet Streams (zeitliche Abfolge von
'wavelets grains' für jeden Frequenz Level errechnet aus den
wavlet-Koeffizienten und damit deren Amplitudenskalierung).

Als Beispielsanwendungen der Manipulation der
Waveletkoeffizienten wurde studien über die Möglichkeit von
Tonhöhenveränderungen, zeitlicher Dehnung, Bandfilterung
und Verschmierung von Zeitlichen Abfolgen der Wavlets
realisiert.

5

ACKNOWLEDGEMENTS

I'm deeply grateful to my supervisor, Winfried Ritsch, for
all their help and support during the course of my research at
IEM. I also thank Johannes Zmölnig and Thomas Musil for their
help in PD programming, and Robert Höldrich and Brigitte
Bergner for their flexibility and support in allowing the pursuit
of this work. I'm also very grateful to Tom Schouten for his
library creb and his personal information about dwt~ external.

Finally, on a personal note, I thank my family and my
best friends for all the patience and support they have shown
during this time, which was fundamental in order to reach my
purposes.

6

TABLE OF CONTENTS

Abstract

Español .. 3

Deutch ... 4

English ... 5

Acknoledgements ... 6

Table of
Contents ... 7

Chapter 1
Wavelet Theoretical Background 11

1.1. Time-Frequency
Representations ... 11

1.1.1. Short Time Fourier Transform 11

1.1.2. Wavelet Transform 12

1.2. DWT: Discrete Wavelet Transform 13

1.3. Lifting Scheme .. 25

1.3.1. Haar Transform 25

1.3.2. Lifting Scheme 28

1.4. DWT in Pure Data: dwt~ external 29

7

Chapter 2
Wavelet Stream Additive Resynthesis 38

2.1. Wavelet Stream Additive Resynthesis 38

2.2. PD implementation of a Wavelet Stream
 Additive Resynthesis 39

2.2.1. Initializations 42

2.2.2. DWT Analysis 46

2.2.3. Coefficients list 47

2.2.4. Granulator ... 48

2.2.5. Output ... 50

Chapter 3
Audio Manipulations in Wavelet Domain 56

3.1.Audio Manipulations in Wavelet Domain
 and its PD Implementation 56

3.1.1. Audio input and dwt analysis 58

3.1.2. Coefficients Manipulations 63

3.1.3. Resynthesis and output sound 64

3.2. Audio Modifications 64

3.2.1. Stretch ... 64

3.2.2. Shift ... 65

3.2.3. Equalization 68

3.2.4. Randomization,..... 69

8

Chapter 4
Conclusions and Future Research 72

Bibliography ... 73

9

10

Chapter 1

Wavelet Theoretical Background

In this chapter I will try to give a theoretical background
about time-frequency representations focused on wavelet
transform, which is the base of this work. This chapter doesn't
want to be a deep mathematical explanation, instead of this I
will try to go into wavelets from an engineer point of view,
more focused on signal processing. More mathematical details
can be consulted in the related bibliography.

1.1. Time-Frequency Representations

Traditionally, signals of any sort have been represented
in a temporal domain or in a frequencial domain. In the time
domain, we can look at an audio signal as magnitudes sampled
at given times. In the frequency domain, an audio signal is
represented as magnitudes of sinusoids at given frequencies.

But for audio analysis, it is quite interesting to have an
overview of an audio signal over both components, as in
classical music scores (temporal view of notes of different
pitch).

A time-frequency representation is a view of a signal
represented over both time and frequency.

1.1.1. Short Time Fourier Transform

The Fourier Transform is a classical tool in signal
processing which breaks down a signal into its constituent
sinusoids of different frequencies. Thus, Fourier analysis
transform our signal view from time to frequency domain.

But in Fourier analysis we can't know when a particular
event took place because in transforming to the frequency

11

domain, time information is lost. If the signal don't change
much over time (stationary signals) this drawback isn’t very
important, but most common signals contain numerous non
stationary or transitory characteristic and we lost an important
information.

The Short-Time Fourier Transform (STFT) was created to
correct this deficiency in Fourier analysis, adapting the Fourier
Transform to analyze windowed sections of the signal along
the time. Thus, the STFT maps the signal into a two-
dimensional function of time and frequency in a sort of
compromise between the time- and frequency-based views of
a signal.

Nevertheless, the STFT has a fixed resolution: we obtain
a information with limited precision, and that precision is
determined by the size of the window. In this way, a wide
window gives better frequency resolution but poor time
resolution, while a narrower window gives good time resolution
but poor frequency resolution. These are called narrowband
and wideband transforms.

1.1.2. Wavelet Transform

The Wavelet Transform gives a solution to the problem of
fixed resolution in STFT: multirresolution analysis. The Wavelet
Transform uses different window sizes for different regions:

figure 1

12

long time intervals where we want more precise low frequency
information, and shorter intervals where we want high
frequency information.

We can take a look at this differences in the next figure:

As well as Fourier Transform breaks down a signal into
its constituent sinusoids, Wavelet Transform is the breaking up
of a signal into shifted and scaled versions of the original
wavelet (mother wavelet).

This mother wavelet is an oscillating waveform of
effectively limited duration that has an average value of zero.
While Fourier analysis uses sinusoids which are smooth and
predictable, wavelets tend to be irregular and asymmetric. We
can look at some examples of wavelet mothers of different
types in the next figure.

figure 2

13

When we make a Fourier analysis we obtain a number of
Fourier coefficients, which when multiplied by a sinusoid of its
corresponding frequency, yield the constituent sinusoidal
components of the original signal. In the same way, the result
of the Wavelet analysis are many wavelet coefficients, which
are a function of frequency and time. Multiplying each
coefficient by the appropriately scaled and shifted wavelet
yields the constituent wavelets of the original signal.

Scaling a wavelet simply means stretching (or
compressing) it, while shifting a wavelet simply means
delaying (or hastening) its onset. We can see some scaled and
shifted wavelets in the next figure.

figure 3

14

Until now, we was talking about wavelet transform in a
continuous time, that is the Continuous Wavelet Transform
(CWT). In short, this CWT is the sum over all time of the signal
multiplied by scaled, shifted versions of the wavelet. This
process produces wavelet coefficients that are a function of
scale and position. We will talk about the wavelet transform in
a discrete time in the next section.

To understand how the continuous wavelet transform
proceed, we are going to summarize this process in five easy
steps:

figure 4

15

1. Take a wavelet and compare it to a section at the start
of the original signal.

2. Calculate a coefficient C, that represents how closely
correlated the wavelet is with this section of the signal.
The higher the coefficient is, the more the similarity. Of
course, the results will depend on the shape of the
wavelet you choose.

3. Shift the wavelet to the right and repeat steps 1 and 2
until you’ve covered the whole signal.

4. Scale (stretch) the wavelet and repeat steps 1 through
3.

5. Repeat steps 1 through 4 for all scales (frequency).

When we are done, we will have all the coefficients
produced at different scales by different sections of the signal.
We can take a view of the original signal by means of this
matrix of coefficients: make a plot on which the x-axis
represents position along the signal (time), the y-axis
represents scale (frequency), and the color at each x-y point
represents the magnitude of the wavelet coefficient C. We can
look this representation in the next graphic.

16

This representation is not easy to understand but it is
especially useful to look at discontinuities in the signal (and
recursivity or repetitions of patterns), and of course to look at
the spectrum of the signal along the time.

1.2. DWT: Discrete Wavelet Transform

After approaching the wavelet transform for a continuous
time in general lines, we are going to get into more details of
how wavelet transform act in a discrete time.

Due to calculating wavelet coefficients at every possible
scale is a fair amount of work and it generates an awful lot of
data, we need to choose only a subset of scales and positions
at which to make our calculations. For computation efficiency
scales and positions based on powers of two (dyadic scales and
positions) are chosen. Thus we can make a Discrete Wavelet
Transform (DWT).

A classical and efficient way to implement this scheme
using filters is known as two-channel subband coder, a
practical filtering algorithm which yields a Fast Wavelet
Transform (FWT), a box into which a signal passes, and out of
which wavelet coefficients quickly emerge, equivalent to the
conventional Fast Fourier Transform (FFT) in the wavelet
domain.

figure 5

17

To understand this scheme we need to talk about
approximations and details. The approximations correspond to
the low-frequency components of a signal, while the details are
the high-frequency components. Thus, we can split a signal
into approximation and details by means of a filtering process:

If we actually perform this operation on a real digital
signal, we wind up with twice as much data as we started with.
But we may keep only one point out of two in both
approximations and details coefficients to get the complete
information. In this way, if we apply a downsampling by 2
after the filtering process to obtain the same amount of data
than the original signal. Due to this decomposition process the

input signal must be a multiple of 2n where n is the number of
levels.

figure 6

18

This decomposition process can be iterated, with
successive approximations being decomposed in turn, so that
one signal is broken down into many lower resolution
components. This tree is known as the filter bank or the
wavelet decomposition tree:

figure 7

19

figure 8: 3 levels decomposition filter bank

20

For example, if we have an input signal with 32 samples,
frequency range 0 to fn and 4 levels of decomposition, 5
outputs (4 details and 1 approximation) are produced:

Level Samples Frequency

1 16 (D1) fn/2 to fn

2 8 (D2) fn/4 to fn/2

3 4 (D3) fn/8 to fn/4

4
2 (D4) fn/16 to fn/8

2 (A4) 0 to fn/16

And the next figure shows its frequency representation:

This iterative scheme can be continued indefinitely until
we obtain an approximation and detail coefficients of a single
value. In practice, we can select a suitable number of levels
based on the nature of the signal, or on a suitable criterion
such as entropy.

This process of wavelet decomposition or analysis has its
reverse version, which allow to assemble back the wavelet
coefficients into the original signal without loss of information.
This process is called reconstruction, or synthesis. The
mathematical manipulation that effects synthesis is called the

figure 9: Frequency domain representation of DWT coefficients

21

Inverse Discrete Wavelet Transform (IDWT).

We can implement the reconstruction process with a
filter bank in a reverse way we have implemented the
decomposition process. While wavelet analysis involves
filtering and downsampling, the wavelet synthesis consists of
upsampling (lengthening a signal component by inserting zeros
between samples) and filtering.

 The lowpass and highpass decomposition filters, together
with their associated reconstruction filters, form a system of
what is called quadrature mirror filters. The choice of this
filters is crucial in achieving perfect reconstruction of the
original signal. Moreover this choice also determines the shape
of the wavelet we use to perform the analysis. To construct a
wavelet of some practical utility, you seldom start by drawing a
waveform. Instead, it usually makes more sense to design the
appropriate quadrature mirror filters, and then use them to
create the waveform.

22

figure 10: 3 levels reconstruction filter bank

23

The wavelet mother’s shape is determined entirely by
the coefficients of the reconstruction filters, specifically is
determined by the highpass filter, which also produces the
details of the wavelet decomposition.

There is an additional function which is the so-called
scaling function. The scaling function is very similar to the
wavelet function. It is determined by the lowpass quadrature
mirror filters, and thus is associated with the approximations of
the wavelet decomposition.

We can obtain a shape approximating the wavelet
mother iteratively upsampling and convolving the highpass
filter, while iteratively upsampling and convolving the lowpass
filter produces a shape approximating the scaling function.

24

figure 11: wavelet analysis and reconstruction scheme

25

1.3. Lifting Scheme

The lifting scheme is a technique for both designing
wavelets and performing the discrete wavelet transform. While
the DWT applies several filters separately to the same signal,
for the lifting scheme the signal is divided like a zipper and
then, a series of convolution-accumulate operations across the
divided signals is applied.

Before to go into details of the lifting scheme, we are
going to explain the simplest wavelet transform, the Haar
wavelet as example and introduction to lifting scheme.

1.3.1.Haar Transform

Haar wavelet split the input signal into two signals:
averages (related to approximation coefficients) and
differences (related to detail coefficients). If we take two
neighboring samples a and b of a sequence, we can replace a
and b by their average s and difference d:

s= a + b
2

d=b? a

If a and b are highly correlated, the expected absolute
value of their difference d will be small and can be represented
with fewer bits (even if a = b the difference is simply zero). We
have not lost any information because given s and d we can
always recover a and b as:

a=s−d
2

b=s+ d
2

If we have an input signal sj, which has 2j samples sj,k, is
split into two signals: sj-1 with 2j-1 averages s-j-1,k and dj-1 with
2j-1 differences dj-1,k. We can think of the averages sj-1 as a
coarser resolution representation of the signal sj and of the
differences dj-1 as the information needed to go from the

26

coarser representation back to the original signal. We can
apply the same transform to the coarser signal sj-1 itself, and
repeating this porcess iteratively we obtain the averages and
differences of sucesive levels, until obtain the signal s0 on the
very coarsest scale, which a single sample s0,0, which is the
average of all the samples of the original signal, that is the DC
component or zero frequency of the signal.

The whole Haar transform can be thought of as applying
a N x N matrix (N = 2n) to the signal sn. The cost of computing
the transform requires O(N) operations, while the cost of the
Fast Fourier Transform is O(N logN).

The main adventage of the lifting scheme is that it can
be computed in-place, without using auxiliary memory
locations, by overwriting the locations that hold a and b with
the values of respectively s and d. We store s in the same
location as a and d in the same location as b. Therefore that
suggest an implementation in two steps. First we only compute
the difference:

d=b? a

and store it in the location for b. As we now lost the value of b
we next use a and the newly computed difference d to find the
average as:

figure 12: Haar Transform single level step and its inverse

27

s=a+ d
2

A C-like implementation is given by:

b -= a; a += b/2;

after which b contains the difference and a the average.
Moreover we can immediately find the inverse without formally
solving a 2 x 2 system: simply run the above code backwards
(change the order and flip the signs.) Assume a contains the
average and b the difference. Then:

a -= b/2; b += a;

recovers the values a and b in their original memory locations.
This particular scheme of writing a transform is a first, simple
instance of the lifting scheme.

28

1.3.2.Lifting Scheme

We can build the Haar transform into the lifting scheme
through the three basic lifting steps:

– Split: We simply split the signal into two disjoint sets
of samples: one group consists of the even indexed
samples , and the other group consists of the odd
indexed samples s2j+1. Each group contains half as
many samples as the original signal. The splitting
into even and odds is a called the Lazy wavelet
transform.

figure 13: Haar Transform of an 8 samples signal (3 decomposition levels)

29

– Predict: The even and odd subsets are interspersed.
If the signal has a local correlation structure, the
even and odd subsets will be highly correlated. In
other words given one of the two sets, it should be
possible to predict the other one with reasonable
accuracy. We always use the even set to predict the
odd one. Thus, we define an operator P such as:

d j−1=odd j−l? P even j−1

– Update: The update stage ensures that the coarser
signal has the same average value as the original
signal by defining an operator U such as:

s j−1 =even j−l +U d j−1

A C-like implementation of the Haar Transform into lifting
scheme is given by:

(evenj-1, oddj-1) := Split (sj);

dj-1 = oddj-1 - evenj-1;

sj-1 = evenj-1 + dj-1/2;

Of course, all this steps can be computed in-place: the
even locations can be overwritten with the averages and the
odd ones with the details. We can look at this process in the
next scheme:

30

The inverse scheme can be immediately built by running
the process backwards, reversing the order of the operations
and flipping the signs. Again we have three steps:

– Undo Update: Given the averages sj and the
differences dj we can recover the even samples by
simply subtracting the update information:

even j−l =s j−l? U d j−1

– Undo Predict: Given the even samples and the
differences dj we can recover the odd samples by
adding the prediction information:

odd j−l =d j−l +P even j−1

– Merge: Now that we have the even and odd samples
we simply have to zipper them together to recover the
original signal. This is call the inverse Lazy wavelet.

The following figure shows this inverse lifting scheme:

figure 14: Lifting scheme

31

The Haar transform uses a predictor which is correct in
case the original signal is a constant. It eliminates zeroth order
correlation. We say that the order of the predictor is one.
Similarly the order of the update operator is one as it
preserves the average or zeroth order moment.

But, we can built a predictor and update steps of higher
order. For example, we can built a predictor and update which
are of order two, which means the predictor will be exact in
case the original signal is a linear and the update will preserve
the average and the first moment. In this case, which is call
the linear wavelet transform, the difference and average
coefficients are given by:

d j−1, l =s j ,2 l+1−
1
2 s j ,2l +s j ,2l+2

s j−1, l =s j ,2l
1
4 d j−1, l−1+d j−1, l

In order to build predictors we can use the subdivision
methods. Subdivision method is a powerful paradigm to build
predictors which allow to design various forms of P function
boxes in wavelet transform. We may think of subdivision as an
inverse wavelet transform with no detail coefficients. In this
context, subdivision is often referred to as the cascade
algorithm. A given subdivision scheme can deffine diferent
ways to compute the detail coefficients.

figure 15: Inverse lifting scheme

32

The simplest subdivision scheme is interpolating
subdivision. New values at odd locations at the next finer level
are predicted as a function of some set of neighboring even
locations. The old even locations do not change in the process.
The linear interpolating subdivision, or prediction, step inserts
new values inbetween the old values by averaging the two old
neighbors. Repeating this process leads in the limit to a
piecewise linear interpolation of the original data. We then say
that the order of the subdivision scheme is 2. The order of
polynomial reproduction is important in quantifying the quality
of a subdivision (or prediction) scheme. A wavelet transform
using linear interpolating subdivision is equivalent to the linear
wavelet transform:

Instead of thinking of interpolating subdivision as
averaging we can describe it via the construction of an
interpolating polynomial to build more powerful versions of
such subdivisions. Instead of using only immediate neighbors
to build a linear interpolating polynomial, we can use more
neighbors on either side to build higher order interpolating
polynomials. If we use D neighbors on left and right to
construct a interpolating polynomial, we will say that the order
of the subdivision scheme is N=2D (and the interpolating
polynomial has an order N-1).

We can look at an example of a linear and cubic
interpolation in the next figure:

figure 16

33

Another useful subdivision methods like average-
interpolating subdivision or B-spline subdivision can be build
into lifting scheme in the same way.

Before to end this section, we are going to show how to
obtain the wavelet mother and scaling function from our lifting
scheme as we obtained it from the decimated filter bank.

Scaling function can be obtained by inserting a delta
impulse as average signal into the inverse lifting scheme:

figure 17

34

As well, we can obtain the wavelet mother by inserting a
delta impulse as difference signal into the inverse lifting
scheme:

figure 18

figure 19

35

1.4.DWT in Pure Data: dwt~ external

The purpose of this work is to study the possibility of the
digital wavelet transform in audio analysis / resynthesis with
Pure Data.

For this purpose I have used an external for PD which
implement the DWT. This external is part of creb PD library
written by Tom Schouten. creb library is open source and it is
available at http://zwizwa.fartit.com/pd/creb/. Also it is
included into the last PD extended versions (PD extended
0.39.x).

dwt~ is an external for PD which implement a
biorthogonal discrete wavelet transform and idwt~ is its
inverse version which implements the inverse discrete wavelet
transform. This DWT is implemented by means of the lifting
scheme.

In the next figure (next page) we can look at the dwt~
help file. In the help file we can distinguish the different
parameters which control the performance of the dwt:

– predict and update message: the predict message
specify the coefficients of the predict function as well
as the filter coefficients of the factored decimating
filter related to the predict step (highpass filter). In
the same way, the update message specify the
coefficients of the update function as well as the filter
coefficients of the factored decimating filter related to
the update step (lowpass filter).
In the help file we can see three examples of this
predict and update message:

– Haar Wavelet
predict 1 0, update 0 0.5

– 1st order Interpolating Wavelet
predict 0.5 0.5, update 0.25 0.25

– 2nd order Interpolating Wavelet
predict -0.0625 0.5625 0.5625 -0.0625,
update -0.03125 0.28125 0.28125 -0.03125

– mask message: sets the predict mask, and computes
an update mask with the same order.

36

– 1st order Interpolating Wavelet
mask 1 1

– 2nd order Interpolating Wavelet
mask -1 9 9 -1

– 3rd order Interpolating Wavelet
mask 3 -25 150 150 -25 3

– coef message: specify half of the symmetric predict

mask. Instead of set the mask message we can only
specify the half coefficients with the coef message.

– even message: specify the order of a symmetric
interpolating biorthogonal wavelet.

37

This messages can be sent to the dwt~ inlet to control
the performance characteristics before to start it or during the
performance. The signal we want to analyze is sent to the
dwt~ inlet and the wavelet coefficients from the dwt analysis
will came from the dwt~ outlet. In the help file a simple sine of
frequency 1500 Hz (8*187.5) is analyze by the dwt~ and the

figure 20: dwt~ help file

38

coefficients of this analysis are showed in the scope table
(right-up corner).

But the question now is: how the wavelet coefficients are
presented at the dwt~ output?

In order to ask this question we can take a look at the
next figure:

This scheme represent the output of the dwt~ for a input
signal of 16 samples (which has 4 levels). The first sample
store the value of the lowest level average (that is the DC
component of the signal). The next samples store the values of
the details coefficients in a dyadic alternative way. We can look
that every odd samples store the differences for level 3 (the
highest level) while even samples alternate the difference
level which store. The difference for the lowest level (d0) is
always in the central sample.

Now we have an overview about how the discrete
wavelet transform works and how we can performance the dwt
in PD. In the next chapter I will try to use this dwt for an audio
analysis and resynthesis by means of an additive wavelet
streams.

figure 21: dwt~ output coefficients distribution

39

40

Chapter 2

Wavelet Stream Additive Resynthesis

In this chapter I will introduce a process of audio
resynthesis by means of a wavelet stream additive synthesis.

2.1.Wavelet Stream Additive Resynthesis

In the last chapter I have seen how wavelet analysis can
decompose a signal into a multirresolution matrix of
coefficients. It is easy to think that, if we make some
modifications in this matrix and then we apply the inverse
wavelet transform to this manipulated coefficients matrix, we
will obtain a modified version of the original input signal. This
audio manipulations in the wavelet domain allow us to make in
an easy way audio modifications which are really difficult to
make in the temporal or frequencial domain.

Moreover we can look at the wavelet transform from
another point of view. We can think in the inverse wavelet
transform as a kind of granular synthesis.

Granular synthesis is an audio synthesis method that
operates on the microsound time scale. The concept of
granular synthesis come from the ideas of the physicist Dennis
Gabor of an organization of music into "corpuscles of sound".
It is based on the production of a high density of small acoustic
events called 'grains' that are less than 50 ms in duration and
typically in the range of 10-30 ms. By varying the waveform,
envelope, duration, spatial position, and density of the grains
many different sounds can be produced.

As well as additive synthesis create rich sounds adding
single sine waves of different frequencies and envelopes,
granular synthesis is able to create complex sounds textures
adding different grain streams (which can be very complex on
its own).

41

In this way, we can think in wavelet waveform as grains
and each wavelet decomposition level as streams which
constitute a granular wavelet synthesis. Therefore wavelet
analysis coefficients can be used as amplitude factors for each
wavelet waveform into this scheme and instead of recompose
the signal using the classical inverse wavelet transform, we
can use an additive synthesis of wavelet streams to recover
the input signal.

We are going to summarize this process in general lines:

1. DWT Analysis: the dwt is performed to obtain
the multirresolution matrix of wavelet analysis
coefficients from the input signal.

2. Wavelet coefficients matrix split: it is necessary
to split the wavelet analysis coefficients matrix
into vectors of coefficients for each levels. This
vectors will be used as amplitude factors vectors
in each stream generation for wavelet grains
windowing.

3. Wavelet streams generation: a wavelet stream is
created for each wavelet level; that is a temporal
succession of wavelet waveforms windowed by
its related wavelet analysis coefficient.

figure 22: Granular synthesis as a additive synthesis of streams

42

4. Wavelet streams addition: the input signal is
recovered from a synchronous sum of different
levels wavelet streams.

A graphic explanation of this process is shown at the
graphic in the next page:

43

figure 23: Wavelet stream additive resynthesis scheme

44

This implementation of the inverse wavelet transform by
means of an audio signal processing instead of classic
decimating filter banks or lifting scheme allow us to manipulate
audio directly in the same way we can manipulate audio grains
in granular synthesis. Thus we can recover any sound from its
set of wavelet analysis coefficients, or we can modify this
sound by two kind of manipulations: modifications in the
wavelet analysis coefficients matrix (data manipulations) or in
the wavelet streams generation (audio manipulations). Both
modifications can be performed in real time.

Obviously, this implementation means processing a big
amount of data (thousand of ''wavelet grains'') in a microsound
time scale as well as granular synthesis process a big amount
of sound grains.

2.2. PD implementation of a Wavelet Stream Additive
Resynthesis

The pd implementation of the scheme explained in the
last section looks like that:

45

That is the main patch that contains the parameter
controls and all the subpatches which performances the
different functions. This implementation allow us to load a
sound file (*.wav) which is analyzed and recovered in real-
time using the wavelet stream additive synthesis scheme. This
analysis and resynthesis are performed by blocks of 2048
samples because would be impossible to performance the
analysis and resynthesis of the whole sound file. Therefore, the
whole analysis / resynthesis process is performed each block
(each 2048 samples). We will know why this value of 2048
samples is chosen during the next explanation.

We are going to explain this implementation step by
step:

2.2.1.Initializations

This subpatch contain the initializations we need before
to start the analysis and resynthesis. Contain another four
subpatches: init, index2level, window_generator and
wavelet_generator.

– init: the necessary parameters before the
performance are initialized: sr_khz set the samplerate

figure 24: main patch

46

in kHz, on_bang send a bang to another subpatches
after this loadbang (due to execution orders), pd
compute audio is switched on by sending 1 to pd dsp,
main screen parameters are initialized (gain,
wavelet_type, nblocks and duration) and the
dwtcoef table is resized to 2048 samples (block size).

– index2level: this subpatch create an index2level
table which relate the dwt coefficients table index
which its related level. Levels are named in that way:

– level 0: coarser average s00 (DC component; 1
sample)

– level 1: highest frequency difference dj-1 (1024
samples)

– level 2: difference dj-2 (512 samples)
– level 3: difference dj-3 (256 samples)
– level 4: difference dj-4 (128 samples)
– level 5: difference dj-5 (64 samples)
– level 6: difference dj-6 (32 samples)
– level 7: difference dj-7 (16 samples)
– level 8: difference dj-8 (8 samples)
– level 9: difference dj-9 (4 samples)
– level 10: difference dj-10 (2 samples)
– level 11: lowest frequency difference dj-11 (1 sample)

figure 25: init subpatch

47

There are
only 11

levels because of the block size of 2048 samples (log2

(2048) = 11). Each level cover a octave band
frequency with center frequencies from 22050 Hz at
level 1 to 21.53 Hz at level 11 (fc = 44100/2level; a
samplerate of 44100 Hz is supposed). Levels higher
than level 11 are not necessaries because they cover
frequencies under 20 Hz, so a number of eleven levels
is enough and we can use a block size of 2048
samples.

The table index2level stores the level value of
each index in the way dwt~ external distribute the
coefficients of each level at its output (take a look at
figure 21). This table will be read to obtain the level
number from index coefficient number and to store it
into a message together with the coefficient value.

In this implementation a level counter from 0 to
11 is triggered using the abstraction until_counter

figure 26: index2level subpatch

48

(faster and more efficient than a classic pd counter
scheme because it uses until looping mechanism).
For each level another counter is triggered. This
counter gives the number of samples of current level
(end value). This value is modified by jump and init
values to obtain the indexes (samples number)
related with the current level. A C-like code allow us a
better understanding of this process:

for (i=0; i<12; i++)
{
level = i;
init = 2^(i-1);
jump = 2^i;
end = 2^(11-i);
for (j=0; j<end; j++)

{
sample = init + (j * jump);
}

}

sample is the index value of index2level table and
level is the level value stored in the table.

– window_generator: this subpatch contain several
window abstractions (for different levels). window
abstraction generate a hanning window for a specified
level (stored in table $1_window, where $1 is the level
number). The size of the window depend of the level
number (size = 7 * 2level). There are only nine window
generators, from level 3 to 11. That is due to the
number of wavelet streams, what will be explained in
the granulator section.

49

– wavelet_generator: this subpatch contain several
wavelet abstractions (for different levels). wavelet
abstraction generate a wavelet waveform for a
specified level and wavelet type. This wavelet
waveform is stored in table $1_wavelet, where $1 is
the level number. In order to generate the wavelet
transform we apply the method shown in figure 19,
which lie in put an impulse into the idwt.
When on_bang is received, an impulse is stored in
table $1_impulse, wavelet table is resize in the same
way window table is resized (size = 7 * 2level), and a
local block size (level blocksize) $1_blocksize is
generated (this block size depend on current level,
$1_blocksize = 8 * 2level). After to generate local
block size, $1_impulse is set into idwt to generate
$1_wavelet.

figure 27: window abstraction

50

Now, we have generated and initialized all parameters
and tables we need (control parameters, index2level
table, windows tables and wavelets tables) before to
load our file and to start the performance

2.2.2.DWT Analysis

This subpatch allow us to load the sound file and to start
its dwt analysis.

figure 28: wavelet abstraction

51

Loaded sound file is stored in input table. Then, when
we press analysis the whole process of analysis / resynthesis
starts. input table is read and sent to dwt~ which stores its
output in dwtcoef table. This table is written each 2048
samples (equivalent to 0.046 msg if samplerate is 44100). In
order to achieve this, switch~ object is set to 2048 samples
and overlap of 1 (switch~ object set the processing block size,
overlap and down/up-sampling, and allow us to switch DSP on
and off). When the sound file reading process has finished,
switch~ object is switched off and off_bang value is triggered.

2.2.3.Coefficients list

During the performance this subpatch create a two
values messages stream. bang~ object trigger the
until_counter object each 2048 samples (the specified block
size) when the analysis process starts. This counter count from
0 to 2047 at the beginning of each block. The counter act as
index to read index2level and dwtcoef tables. Thus, the level
and coefficient value of each sample is sent in a message at
the output of this subpatch. Therefore, each bang~ time (at
the beginning of each block) 2048 messages with the
structure [level, coefficient value] are sent.

figure 29: dwt_analysis subpatch

52

2.2.4.Granulator

This subpatch contain several stream~ abstractions
which receive the coefficient messages from
coefficient_list subpatch and generate the wavelet stream
for each level. This streams are added to the granulator
output.

There are nine stream~ abstractions which generate nine
wavelet streams from level 3 to 11. First at all, we are going to
show how this abstraction works.

figure 30: coefficients_list subpatch

53

The abstraction stream~ starts to work when analysis
value switch on the switch~ object (that is when the
performance starts). In its input it receive the messages from
coefficient_list subpatch. The level value from this
message is tested and if this level value is equal to the stream
level, the coefficient value from that message is stored into an
empty message. This message stores all coefficients of the
stream level at each block. This values will be the amplitude
factors of each wavelet waveform in this stream at current
block.

At each local bang~ (each stream~ abstraction has a
different bang and block time which depend on its level) this
block coefficients message is sent to the list – list split
scheme and then it is cleared to receive the new coefficients
value of next block. list object stores a list and append
consecutive lists. Then, list split object split the list,
obtaining the first list value at the left outlet (because we use a

figure 31: stream~ abstraction

54

split point of one) and the remaining ones at the middle outlet.
This remaining list is sent again to list object creating a
dropping mechanism. Each local bang~ a coefficient from the
block coefficients message is sent. This coefficient multiply the
current window which multiply the current wavelet, scaling the
wavelet waveform based on this analysis coefficient value.

This process is really important because we need a
perfect synchronization between the given coefficient and the
current performance time and we are working in a microtime
scale. Each coefficient must to be related with its correct
wavelet. For example, at stream~ abstraction of level three we
have to receive 256 coefficients per block (256 coefficients =
blocksize / 2level = 2048 / 23). So we have to trigger a
coefficient each 8 samples (2048 / 256 = 8). In order to allow
it we use a block size of 64 (8 * 23) with an overlap of 8 which
means to obtain a coefficient each 8 samples (23).

In PD block size of 64 samples is the default block size,
and the minimum too. It is impossible to process with a block
size less than 64 samples. That means the previous example
(stream~ abstraction of level three) is the highest frequency
stream we can generate (5512 Hz). Streams of higher
frequency are impossible to obtain because we need a
blocksize less than 64 samples to achieve it.

2.2.5.Output

This subpatch simply send the audio signal we obtain to
digital-analog converter in order to listen it.

55

Chapter 3

Audio Manipulations in Wavelet Domain

In this chapter I will explain how we can modify audio in
the wavelet domain with PD.

3.1.Audio Manipulations in Wavelet Domain and its PD
 Implementation

As we explain in Chapter 1, dwt~ external for PD allow
us to obtain a dwt analysis coefficient matrix which we can
modify before to
put it into idwt~ external to recover the original sound. With
this purpose I have implemented a PD patch which allow us
different audio manipulations. This is the appearance of its
controls main screen:

We can see similar controls than the patch shown in the

figure 32: main patch, controls section

56

previous chapter: a load file button, a gain control, a wavelet
type selector, duration, nsamples and nblocks information.
Moreover we can choose between load a sound file with sound
file button or to use a live signal connected to our input audio
device (activating live signal toggle). Because of the possibility
of use a live signal a signal level vumeter is added. Clicking on
pd modifications box (above load file and live signal buttons)
we open another screen which contains all controls for audio
manipulation:

Instead of commenting this audio modifications controls
now, we are going to explain how this patch works in order to
obtain a better understanding of this process. We can take a
look at the program section at main patch:

figure 33: modifcations control patch

57

The three subpatches on the up-left corner (pd
loadfile, pd live_signal, and pd dwt_analysis) generate
the selected audio input and make its dwt analysis. The two
subpatches under the previous ones (pd dwt_resynthesis,
out_volume~) performance the idwt from the modified
coefficients list and play the output sound. The three
subpatches on the right (pd list_generator, pd
split_levels and pd data_modifications) manage the dwt
analysis coefficients and manipulate it in order to modify the
input sound. At the bottom of the screen are the initializations
subptches and the tables which show the input and output
waveforms.

We are going to explain individually each of this process.

3.1.1.Audio input and dwt analysis

We can choose between to load a sound file (*.wav) or
to use a live signal connected to our input audio device (we
need to configure audio settings in pd on order to select the
right device).

If we press load_file button we can select a *.wav file
which is stored in soundfile table (we can take a look at its
waveform by clicking on table soundfile). When we press
on_bang this sound file is played and the analysis starts. We

figure 34: main patch, program section

58

can stop this process by clicking on off_bang. We can take a
look of this subpatch implementation on next figure:

When we click on live_signal toggle the signal from
adc~ (analog-digital converter object, which obtain the audio
signal from selected input audio device) is sent to the
dwt_analysis subpatch instead of the load file signal. Next
figure show this live_signal subpatch implementation:

figure 35: load_file subpatch

59

Selected
audio signal (sound file or live signal) is sent to dwt_analysis
subpatch which performances the discrete wavelet analysis.
Analysis coefficients are stored into dwtcoef table each 2048
samples (block size = 2048). We can select which type of
wavelet transform we want (haar, 2nd, 3rd, 4th, 5th or 6th order
interpolation). on_bang starts the analysis and off_bang stop
it. That is the subpatch implementation:

figure 36: live_signal subpatch

figure 37: dwt_analysis subpatch

60

3.1.2.Coefficients manipulations

Wavelet analysis coefficients are stored in dwtcoef table
and we need to manage it and manipulate it in order to obtain
different audio modifications.

The first step is to create a message stream with the
analysis coefficient value and its related level and index. This is
the purpose of
list_generator subpatch of which implementation is shown
on next figure:

Each block_bang (that means at the beginning of each
block) until_counter abstraction act as index counting from 0
to 2047 which allow to read tables index2level and dwtcoef
(index2level is created in the same way and with the same
purpose than in previous chapter). This tables provide the level

figure 38: list_generator subpatch

61

and analysis coefficient of each index respectively.
index_counter gives an index number from 0 to 2047 each
bang which is modified by pitch value.

This three values are stored in a message with this
order: [level, index, coefficient]. Each block_bang one of this
message is sent to the subpatch outlet.

This messages are received by split_levels subpatch
which route each message depending on its level. From this
point messages of different levels have an independently
proces:

This independently process is made by a
modification_level abstraction.

figure 39: split_levels subpatch

62

Messages of each level are processed by its related
modification_level abstraction. This abstraction modify the
analysis coefficient value which is multiply by the output of
randomization abstraction (a random number generator with
an specified range and frequency of generation) and by a
$1_level (a level factor from equalization controls). This
modified coefficient is put again into a message with its related
index.

All modified messages from different levels are sent to
write_coef abstraction which writes again this coefficients
into a new table call idwtcoef table:

The index which control the writing of coefficients into

figure 40: modification_level
abstraction

figure 41: write_coef abstraction

63

idwtcoef table is multiply by a time_stretch value which
come from the stretch control in modifications subpatch.

3.1.3.Resynthesis and output sound

Now, we have a new table which contains the modified
analysis coefficients for each block. This idwtcoef table is read
each block and it is sent to idwt~ object which performance
the inverse discrete wavelet transform and recover an audio
signal from this table.

At the output of idwt~ object we receive the modified
audio signal which is visualize in outputsignal table and sent
to out_volume~ abstraction which allow us to listen this audio
and control its volume.

3.2.Audio Modifications

We have explained how to create a PD patch for audio
manipulations in wavelet domain. Now, we are going to go
more into details of this audio modifications.

In figure xx we have seen the modifications control
screen, which have four different modifications: stretch, pitch,

figure 42: dwt_resynthesis subpatch

64

equalization and randomization. We are going to comment
each of this modifications separately.

3.2.1.Stretch

This effect have not to be confused with a time-stretch.
The name ''stretch'' for this modification is due to the
stretching of the resynthesis block size. The stretch control has
5 values: 0.125, 0.25, 0.5, 1 (value by default), 2 and 4. The
selected value multiply the block size in resynthesis process
(dwt_resynthesis subpatch). Thus, stretch values higher
than one uses a higher block size in resynthesis process (4096
or 8192), while values lower than one uses a smaller block size
(1024, 512 or 256). One value keep the same block size than
in analysis process (2048).

The meaning of this modification is a big distortion of
sound frequencial spectrum which consist of low frequencies
suppression in stretch values lower than one and high
frequencies suppression in stretch values higher than one.
Moreover, this process generates an apparition of some
harmonics in spectrum related with block size. In next figure
we can compare both spectrum of original signal and spectrum
of this signal processed with a stretch value of 0.125 (blocksize
/ 8):

65

In this figure, red line show original signal spectrum
(original signal is a 10 seconds white noise), while blue line
represent the modified signal spectrum (stretch value =
0.125). We can look how the lowest frequencies are reduced in
the modified signal (frequencies lower than 150 Hz), while
significant peaks appear at specific points in spectrum (172,
344, 516, 689, 861, 1033 and 1205 Hz). The first point at 172
Hz is directly related with current block size of 256 samples
(2048 / 8): samplerate / blocksize = 44100 / 256 = 172. This
first harmonic is related with a discontinuity each 256 samples
due to this block size. Successive harmonics are separated 172
Hz in a kind of modulation process. The same principle which
creates this harmonics is perceived as a beating for high
stretch values (specially with a value of four). This is due to
the block sizes and its related frequencies (44100 / 4096 =
10.7 Hz, and 44100 / 8096 = 5.3 Hz). This frequencies are so
low that are perceived as a fast beat instead of a frequency
component (this frequencies are below the human perception
frequency range).

figure 43: original and modified signals spectrum

66

This process produces a big sound distortion with a kind
of pitch shift perception. If we modify a human voice sound
with stretch values higher than 1 we can listen a very deep,
low tone voice sound which is intelligible with stretch value of
2 but difficultly understandable with value of 4. The same
human voice sound processed with stretch value lower than 1
is unintelligible, higher pitched and scattered.

3.2.2.Shift

As well as the previous modification, this effect must not
to be confused with a pitch shift. The shift word is referred to a
process of analysis coefficient shift. At messages generation
process, an index value is generated from a counter to related
the current coefficient with its time position and frequency
level. The shift value is added to this index value, in order to
relate time-level position of current coefficient with shift value.
This value don’t make a simple time shift or pitch shift on
current coefficient. Instead of this, the effect of shift value
depend on its numeric value. If we use an odd shift value, for
example one, all coefficients will be related with next wavelet
waveform, which means a big distortion because coefficient
C1,0 will envelope wavelet related to coefficient C2,0, coefficient
C2,0 will envelope wavelet related to coefficient C1,1, coefficient
C1,1 will envelope wavelet related to coefficient C3,0, etc.

If we use an even shift value, for example two, all
coefficients are shifted two positions, which means a time shift
for level one (because level one is stored in all even samples)
and a time and level shift for another levels.

figure 44: shift = 1

67

We can listen how different is the distortion produced by
an odd shift value with regard to an even shift value.

3.2.3. Equalization

The equalization controls looks as a typical octave band
graphic equalizer:

In order to implement this equalizer, wavelet analysis

figure 45: shift = 2

figure 46: equalization controls

68

coefficients for each level are multiplied by its related
frequency band gain. Each level cover an octave band with the
specified central frequency. Numeric value of each frequency
band equalization are not dB gain values, instead of that, they
are multiplication values: for example, one value doesn’t
amplify its band, two value multiply by two its band gain (+3
dBs), and 0.5 value divide by two its band gain (-3 dBs).

3.2.4. Randomization

This effect allow us to randomize audio output with a
specified randomization range and frequency. We can take a
look to randomization controls in the next figure:

69

Randomization controls are independent for each level;
we can select a different randomization range and frequency
for different frequency bands, or we can randomize only one
frequency band. Randomization parameters are applied only
when we switch on the on/off randomization toggle. If this
toggle is switched off, randomization is not applied. We can
reset randomization values by means of clicking on reset
bottom. Values by default are 0 for frequency, which could be
between 0 and 1000 Hz, and 20 for range, which could be
between 5 and 80.

randomization abstraction is inside
modification_level abstraction. We can take a look to

figure 47: randomization controls

70

randomization abstraction in the next figure:

When random_toggle (on/off toggle) is switched on, a
random generator generate a number between 0 and 1000
each 2 msg. This number is evaluated with moses function
depending on the current frequency value ($1_freq). Only
random numbers lower than current frequency value are put
at the left outlet of moses function. That means the higher the
frequency value, the higher the frequency of random numbers
generation. This random numbers set a bang for another
number generator between 0 and randomization range value
($1_range). The random number we obtain is scaled to set it
in a desired range to multiply it by the current wavelet
analysis coefficient. Thus, we can apply a randomization of
wavelet analysis coefficients which means an audio
randomization for each level or frequency band.

figure 48: randomization abstraction

71

Chapter 4

Conclusions and Future Research

This work have tried to create a new kind of audio
resynthesis by means of additive wavelet streams. The result
of this resynthesis process has not been suitable in its PD
implementation, due to its limitation to generate high
frequency wavelet streams. This lost of high frequencies
(above 5 KHz) doesn’t allow us to obtain an original signal
perfect reconstruction. Because of this, audio manipulation in
this analysis-resynthesis process have not been implemented.
Future researches could try to achieve a perfect signal

reconstruction by means of this wavelet additive stream
resynthesis with a different implementation. Maybe an
implementation of this scheme on a DSP could offer better
results. The idea and theory of this wavelet analysis – additive
wavelet stream resynthesis process have been presented here
to allow a future deeper research on its possibilities in audio
modification and as a different approach to granular synthesis,
which could be focused in computer music purposes.

Possibilities of audio manipulations by means of wavelet
analysis – resynthesis with Pure Data have been shown in
order to expand the audio processing tools with PD. Wavelet
transform and audio processing in wavelet domain have not
been used frequently in PD, although that could be a powerful
and interesting tool for audio processing. I hope this work
encourages more people to approach wavelet processing with
PD.

72

BIBLIOGRAPHY

Books:

– Boulanger, R. (ed.). The Csound Book : Perspectives in
Software Synthesis, Sound Design, Signal Processing, and
Programming. Cambridge, Massachusetts: The MIT Press,
2000.

– Daubechies, I. Ten Lectures on Wavelets. SIAM, 1992.

– Daubechies, I. & Sweldens, W. Factoring Wavelet
Transforms Into Lifting Steps, 1996.

– De Poli, G., Piccialli, A. & Roads, C. (ed.). Representations of
Musical Signals. The MIT Press, 1991.

– Dodge, C., & T. Jerse. Computer Music. 2D rev. New York:
Schirmer Books, 1997.

– Don, G. W. & Walker, J. S. Time-Frequency Analysis of
Music, 2005.

– Heinz Gerhards, R. Sound Analysis, modification, and
Resynthesis with Wavelet Packets. University of British
Columbia, 1986.

– Holzapfel, M., Hoffmann, R. & Höge, H. A Wavelet-Domain
PSOLA Approach. Institute for Technical Acoustics, Technical
University of Dresden.

– Hoskinson, R. Manipulation and Resynthesis of
Environmental Sounds with Natural Wavelet Grains. McGill
University, 1996.

– Keller, D. & Truax, B. Ecologically-based granular
synthesis. School for the Contemporary Arts, Simon Fraser
University.

73

– Kussmaul. C. Applications of Wavelets in Music. The Wavelet
Function Library. Darmouth College, Hanover, New
Hampshire, 1991.

– Miner, N. E. & Caudell, T. P. Using Wavelets to Synthesize
Stochastic-based Sounds for Immersive Virtual
Environments. University of New Mexico.

– Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J. M. Wavelet
Toolbox. User's Guide, version 2. The MathWorks, Inc. 2000.

– Opie, T. T. Creation of a Real-Time Granular Synthesis
Instrument for Live Performance. Queensland University of
Technology, 2003

– Oppenheim, A. V. & Schaffer, R. W. Digital Signal
Processing. Prentice-Hill, 1975.

– Puckette, M. Theory and Techniques of Electronic Music.
University of California, 2005.

– Reck Mirand, E. (ed.). Computer sound design: synthesis
techniques and programming. Focal Press, 2002.

– Rowe, R. Machine Musicianship. The MIT Press, 2001.

– Sarkar, T. K., Su, C., Adve, R., Salazar-Palma, M., Garcia-
Castillo, L. & Boix, R. R. A Tutorial on Wavelets from an
Electrical Engineering Perspective. 1.Discrete Wavelet
Techniques. IEEE Antennas and Propagation Magazine, Vol.
40, No.5. 1998.

– Serrano, E. P. Introducción a la transformada wavelet y sus
aplicaciones al procesamiento de señales de emisión
acústica. Escuela de Ciencia y Tecnología, Universidad
Nacional de General San Martín.

– Schnell, N. GRAINY - Granularsynthese in Echzeit. B.E.M. 4,
Intitut für Elektronische Musik, Graz, 1995.

– Sweldens, W. & Schröder, P. Building Your Own Wavelets at
Home.

– Torrence, C. & Compo, G. P. A Practical Guide to Wavelet
Analysis. University of Colorado.

– Wornell, G. Signal Processing with Fractals: A Wavelet-

74

Based Approach. MIT, Prentice Hall. 1996.

– Xiang, P. A new Scheme for Real-Time Loop Music
Production Based on Granular Similarity and Probability
Control. DAFx02, 2002.

– Zölzer, U. (ed.). DAFX - Digital Audio Effects. John Wiley &
Sons, 2002.

Web Sites:

– PD Portal: puredata.org

– The PD-List Archives: lists.puredata.info/pipermail/pd-list

– The Wavelet Digest: www.wavelet.org

– The Wavelet Tutorial:
users.rowan.edu/~polikar/WAVELETS/WTtutorial.html

– Wikipedia: wikipedia.org

75

